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ABSTRACT

This paper develops algorithins for multivariable state-space identification which can be
used to estimate models 11 any operator of interest i.e., delta-rule, shift, Laplace s, etc.
The approach is based on the Stat ¢ Space from Frequency Data (SS1''1)) algorithin which
was designed specifically to chiminate distortions from windowing eflects. An important
aspect of the approach is the usc of ovcerpararnet rization. A theoretical result is proved
which demonstrates that the extra dynamics introduced from overparametrizing in the shift
opcrator are stable, while the extra dynamics introduced from overparametrizing in the
Laplace s and delta operators are generically unstable. This leads to certain modifications
of the Laplace and delta operators to ensure stability under overparai netrization. The
uscfullness of the identification algorithm is demonstrated on data taken froma 4-input/3-
output flexible strut.turc cxperiment, resulting in an identified state-space model with 100
states accurate over a 1 00 Hertz bandwidth.

1. INTRODUCTION

Recently, it has been found that realization algorithmms based on Markov paramcters
[8][9] [10] can be eflectively applied to the problem of state-space svstemn identification.
1'0 date, these algorithms' have been developed primarily in the tiine-domain [9][12] [14].
However, in many applications frequency rather than time domain data is available. In or-
der to apply realization algorithins to this case, one must compute the Markov paramneters
from frequency data. 1t is at this point that windowing distortions are often introduced.
For example, an Inverse Diserete Fourier Transforn (1D FT) of the frequency data pro-
vides an estit nate of the Markov paramcter sequence which is distorted by time-aliasing
cflects [15]. The State-SImcc Frequency Domain (SSFD) algorithin was introduced in [6]
to avoid such windowing distortions. The basic idea is to generate Markov paramncters
mdirectly from a transfer function which has been curve fitted to the frequency data using
the methods found in [4].

I this Paper the SSFD algorithin is extended to estimate state-sIlmcc models in any oD
crator of interest,i.c., Laplace s, delta-rule, shift,ctc.. from frequency domain data. In
pursuing this extension, it is required to analyze the eflect of overpararnetrization. It will
be shown that the shift operator is particularly well suited for the job, i.e, the extra dy-
namics introduced by overparamctrization will always be stable.  In contrast, it will be
shown that the delta olw.rater andl.aplace operator are poorly suited for the job i.e, the



extrancous dynamics fromn overparametrizing are generically unstable. The main theoreti-
cal result of this paper characterizes the extrancous dynamics due to overparal jetrization,
and is used to suggest appropriate jpodifications of the delt - rule and Laplace operat ors.

The SSKFD algorithmm is then demonstrated on multivariable data set from a 4-input/3-
output flexible structure experiment. Complex curve fitting is perforined based on the
algorithins and sparse matrix mecthods givenin [4], demonstrating the suceessful estim -
tion of 780 paramecters inthe fitted transfer function. Markov parameter est iinates are
generated from the estimated transfer function according to the SSFD approach, leading
to a (reduced) multivariable state- space model with 1 00 states accurate over a bandwidth
I 00 of Herte.

2. STATE-SPACEFREQUENCY 1)0OM A IN IDENTIFICATION

I this scetion, the SSF1) algorithmn of [6] is reviewed, and extended to the estimation of
state- spaccmodelsinthe arbitrary operator £.

State-Space Frequency Domain (SSFD) Identification A lgorithmn

Step 1. Cuwrve fit the frequency response data G(w;) 7 = 1,...,m, to find the transfer
function G which minimizes or approzimaiely minimizes the following 2-norm eriteria,

m
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Here, the complex operator € is arbitrary; the data G(wi),i= 1, . ... m is given by noisy
Values of the transfer function matrix evaluated over a grid Of m frequency points; w(w; )
is a specified weighting function of frequency; and the Frobenious norin is defined as,
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with denoting the complex conjugate transpose. For optimization purposes, the

transfer function matrix G(€) is considered to be inthe form of theratio of a matrix
nuierator polynomial B(€) and an ?Itll-order monic scalar denominator polynomial a(€),

i.e.

B(E)
a(¢)
B(&) = Bo-1 I . 4B (4)

a(é)=-1+ & la, & (5)

where B € R X" L= O,,')/ Themodelor der 21 should be chosen asan 11] »per })01111(1
onthe true plant order so that the optimization problein is overparam cirzed.

G(£) - 3)

Several algorithms are presently available for solving (1). These mcethods tend to be of two
types, fixed-pe)int iterations [1][7][13][16] [19][20], or fixed-~millt, iterations combined with
modified gradient methods [4][17] [20].




A simple and eflective, (but approximate) algorithin for minimizing (1) is found in the
work of Sanathanan and Kocrner [16]. The algorithm was introduced for SISO plants in
the Laplace s operator, but is easily extended to the multivariable case i the arbitrary
opcrator €.

SK Iieration:
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with initial condition d - 1,B° = 0. With «* fixed at cach iteration, the cost function
in(6) is quadratic. Hence,the SK iteration is implemented as a sequence of lincar least
squarcs problems. As proposedin [4], an effective approach is to use the SK iteration as an
initializer for a Gauss-Newtion (GN) iteration. Details on the SK and GN iterations with
choices of polynomial basis for curve fitting inthe 2, é and soperatorsare givenin [4].
Also, sparscinatrix methods are introduced in [4] which imake use of the special strut.turc
of the matrices arising inthe SK and GN iterations for the mnultivariable case.

Step 2. Choose any N > 2n+4 2, and solve for Markov parameters H;, 1= 0,..,N.

Given G, onc can divide a(€) into B3(€) to give the Markov paramecter sequence {1},

BE) NSy e
i H,? 7
a(¢) >~; ¢ 0
which gives upon cross-multiplying,
Bt B I 0 SR
i= 0

Bquating cocflicients of the first N powers of € 'in (8) gives the following systen of lincar
equations,
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Given the estimated polynomial a(€) and polynomial mmatrix I3(€), the mnultivariable Markov
parameters H; € R"'v>"v 7= (), . . . . N canbe talc.u]atcd by solving t he above system of
cquations. Since the matrix to be inverted is lower triangular with ones on the diagonal, it
is always invertible and a solutionalways mists. Furthermore, since this system of equa-
tions is block triangular it can be solved by backsubstitution giving rise to the following
recursive formula,

Ho = By (10a)
k
Hy = By - >_:(1j]]k- 3 k= 1,.,m (100)
i1
n
Hy = - };aj]]k- 53 k=mn+41,...N (10¢)
i

Step 3. Choosc any v and s such that v 4 s < N- 2 and muin(r, s) > n,and form the
Hankel type 211a.i 2 ices H(O), 11(1) € Rrv (T4 X0 (s42) g

i ]]0 H, ]]3_4]
1, Hy oo Hgyo
HO)= | . : : (11)
»]]1.*] ]I'_{Q AR ]17_* S‘*]-
H, Hy o Hgyo
H, Hy - Hgys
Hm= . . . (12)
-]],-42 ]],-43 ]]r—ls—{’zj
Step 4. Compule a balanced stailc-spacercalizationusing the ERA algorithm, i. c.,
4.(' Compute the SVD of H(0) to give,
oy = unv” (13)

where p = min(ny(r + 2),0 w (s 4 2)) + 2, U ¢ R0 230y ¢ graled 2)xp 35 o
diag{oy, ...,0, }, and the singular valu ¢s are ordered by size, 0, > 04y L -1

4. b Plotthe Hankel singular values oitovisualize trade-of | between model order and iden-
lification accuracy, and truncale to keep only ¢ singular val ve. ~.

4. ¢ Form g-th order . dai c-space realization i 7L the operator € as,
x = Agx | Bou (14)
y =Cqa+Du (15)
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wh ere,

Ag= 3Pyl myvs, 12 (16.0)
B, 3V E, (16.5)
C, = BETU L2 (16.¢)
D = H(0) (16.d)

V17 ]“ 1y X
]'/.j ‘ [ Voxny, ()] € It ny, (14 2) (17.0)
EY = Huuxn, 0] € R xnu(s42) (17.))

g = diag{oy, ...,04}

U, - submatrix formed from first ¢ columns of U

V, - submatrix forined from first ¢ columnns of v

3. OVERPARAME TRIZATION IN COMPLEX CURVE FITTING

A key property of the SSKD algorithm is that the model order inthe complex curve fitting
step can be overspecified. This is be cause near Imlc-zero cancellations in the curve fit forin
weakly uncontrollable and/or unobservable subspaces i he state-space realization and

arc systematically eliminated based on Hankel singular values.
The effects of overparamctrization in general problemns of complex curve fitting will be

analy zed in this section. We will need the following leimna,

Lemmal A monic polynomial
() =146 L el (If9)
is stable if an d only if its coeflicient vecl or ¢y = [c1, ..., ¢ canbe writt en as,
Cp = »71352] 793 (19)

wh ere K22 ¢ R and r21 € R are determined fro m a matriz partition of a symmnetric
positive definite Tocplitz matriz B ¢ RUAD XWE D) 1 o

R:- |-- [- - ~- (20)
21 | IRo2

Proof: 1t is shown in Vieira and Kailath ([18], sce Lemina on page 219 and eqn (13))
that a polynomial ¢(€) has all of its roots inside the unit circle if and only if|

R [C"] | (21)
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where, R ¢ RE DX j¢ o symmetric positive definite Toeplitz matrix, and the scalar
f# # 0 can be chosen arbitrarily since it scales ¢(€) and will not affect the polynomial’s
roots. Substituting the partitioned structure of R (20) into (21) gives,

711C0 - 7‘3;(’:' = f (22)
r91€0 -) Ii99¢y = o (23)

Solving for ¢g and ¢, simultancously in (22)(23) and letting 8 = ryy - T3 ]3591 r21=
det(R)/dct(IR22) > g gives ¢o= 1 (hence ¢(€) is monic) and ¢, = - 35121, as desired. =

The main theoretical result of this paper is given next.

Theorem 1 Let the plant be given by the following rational {iransfer funciion in the
complex variable €,

()

G(¢) - o(6) (24)
a(§)=140 (1-{... H4a,& ™" (25.(1)
b(€) = bo+ b€ 4 A b (25.b)

where polynomials a(€) and b(€) are coprime. Assume that nois eless data G(&;) 1s specified
at N distinct valuesof &, 1 =1, ..., N, none of which coincide with roots of a(¢) 07" b(€);
and lct overparametrized polynomials @ and b & order N > n > n satisfy the data, 1.c.,

0= - G(&)a(&)+ (&), 1= 1,..,N (26)

a(@)= 14 a e (27a)
b(E) = b+ by& A o b (270)

Then, the follounng propertics hold:

G a©Ue) - ()
i) a(€) = a(®)e(t)
i) WE) = UE(E)

where c¢(€) isa monic polynomial of order £ = (i - n), t.e.,

()1 + & el ! (28)

Furthermore,let aunique solu tion to (26) be oblained as,
0- Hiy (29)
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where 1 denotes the Moore-Pen osc inverse, and (26) has been rearranged into matriz form
as follows,

HO- y (30)
i _m“v %M_s (31a)
.%n = —.: y ey Ay Sw .%@ = ?o“@_v..;'@:_u‘ AWH@V

s{ry]’ Y7 [s{e)

-GG L S GE)ET S
H = L _ : (33)
~GENEN . - GENEN" | & o &

= [G(&), ., GEN)] (34)

Then,

(iv)  all € roots of ¢(&) lic strictly inside the unit circle.

Proof: Substituting G from (24) into (26), multiplying both sides by a(€) and eva uating
on & for 1= 1,... 7 gives the systemn of equations,

a(€)b(&) = b(Ea(&) 1= 1,0 (35)

Result (i) follows by writing (35) in mnatrix forin, using the fact that the resulting Vander-
monde matrix is nonsingular when formed from powers of the distinet values € [11].

Continuing, since a and b are coprime, there exist polynomials u(€) and v(€) such that,

1= w(€)a(€) + v(£)b(E) (36)

Multiplying both sides of (36) by @(€) and using result (i) gives,
a(€) = a(§)a(€)u(§) 4 a(EH(&)v(E)

- a(©)a()u(€) 4 HOa@w(E) = (a@u(€) 1 HEW(E) )a(€) (37)

Letting e(€) = a(€u(€) + b(&)v(€) in (37) proves result (ii). Likewise, result (iii) is proved
by multiplying both sides of (36) by &(€) and using (i) to give,

b(E) = b(&)a(€)u(€) 4 WEM(E)v €)

= a(E)b(E)u(€) 4 WEOVEw(E) = [ a(Ou(€) + W(E)v(E) )b(é) (38




Result (iv) is proved next. It follows by definition of the Moore 1 cnrosc inverse {2] that
the solutionin ('29) is equivalent to the solution of the optimization problem,

nin |]6]|? (39)
0

subject to,

HO= (40)

However, inlight of results (ii) and (iii), this is also equivalent to the following problem,

min (] -} ||9||2> (41)

where ey = ey, . ... ¢g)?, and without 10ss of generality a ‘(1”7 was added to the cost (this
does not affect the minimization). It is noted that the polynomial identities in (ii) and
(iii) can be put into matrix formn as,

o) 13 @

where A = [£,|A] is Tocplitz with first columnn £, = [1, a, . . . . @, 0,. ... 0]" and B:[(,|B]
is Tocplitz with first columnu £ = [bo, by, . ... 0y,0,. ... O]T. The constrained optimization
problem (41) is now completely in matrix notation and can be solved to give the closed-
form solution,

co s - I (43)

where the matrix,

R- A"A4 B'B (44)
is partitioned as in Lemma A.] with T,y = (fz'[’a - [Z{b; roy = Al, + By, and Ioo =

-1 3571’5 . \ . . .
A A -{ B B.}rom the symmetric positive definite Toeplitz structure of I8 in (44) it
follows from Lemnmma A.] that the roots of

(&) = T4 e 4. 4 et (45)
lic inside theunit circle which is the desired result (iv). M

4. 1) ISCIISS1ION

Theorem 1 is important because it indicates (assuiming noiscless data and infinite preci-
sion arithnnetic) that the true plant dynamics will be a subset of overparamectrized plant
dynamics and the extrancous poles and zeros corne inas exact Jmle-zero cancellations. Fi-
nally, it specifies that the extrancous dynamics introduced from overpara netrization will
be inside the unit circle (assuming that the pscudoinverse is used to ensure a unique solu-
tion to the overparamnctrized problen, and that the polynomials are fitted monic in their
highest power). This mcans that a complex operator overparametrizes stably if and only
it 1ls stability region w11y encompasses the unit disk. We have the following immediate
results,



1) The shift Operator £ =z overparametrizes stably since its stability region is identical to
the unit disk. Note that the polynomials (27) in Theorem 1 are defined in causal form, and

hence the choice € = 271 corresponds to a noncausal form, which will not overparametrize

stably.

2) The delta operator £ = 6= (2 - 1 )/7" dots not overparamctrize stably since the delta-
rule stability disk ounly partially encompasses the unit disk.

3) The Laplace s operator docs not overparametrize stably because its stability region
(i.e., the left half plane) only encompasses half of the unit disk.

4) The delta operator can be modified to 6= 4 gz;]) which overparametrizes stably for
any 0 < a <1and 1 < B <(2- alpha)/alpha. Note that letting o = 1, = 1 recovers
the shift operator, while the choices a = 7" and # = 1 gives the new operator,

(- 14 7)
7‘

[«

which for small 7" is only a slight modification of the original delta-rule definition

5) The Laplace s operator can be modified to s = s -f # which overparametrizes stably for
any > 1.

Maintaining stability inthe face of overparametrization cusures that a stable plant will
be estimated as a stable plant (this is important for robust, coutrol analysis multivariable
Nyquist Theoreimn), and furthermore that no artificial nomnininmun phase zeros will be
introduced inadvertently in the identification effort (this is important for any approach to
control). Furthermore, powers of z form a natural orthogonal basis when evaluated on the
unit circle which is ideal for estimation purposes. Finally, using z, it can be shown that the
restriction of the poles to the unit disk ensures that the condition munber of the matrix
in (9) (required to be inverted in the SSFD algorithm) is relatively sinall. These three
propertics indicate the reason for the success achieved in [4] [6] and many other approaches
mmthe literature which use powers of z as a polynomial basis.

Unfortunately, none of these nice properties carry over to the delta-mlc and Laplace op-
crators. While some modifications for overcoming these difficultics are given in the above
discussion (for stable overparanictrization),andin [4] (for modifying the power basis to an
orthogonal Chebychev basis), further efforts are required to develop a completely satisfying
approach to curve fitting in these ope rators.

5 FE XPERIMENTAL CASE STUDY

This example demonstrates the SSKD algorithin on experimental data taken from the
J 11, Advanced Reconfigurable Control Testbed. A 4-input, 3-output transfer function is
considered, where cach actuator is an active stint, and cach sensor is an acceleromneter.
The frequency response data is obtained using a 512 Schroeder phased suin-of-sinusoids
input design at a sampling rate of 200 Hertz (background on the design of Scliroeder-
phased mputs, and their use in unbiased estimation can be found in [3]). The magnitude
responsce is shown as the dashed line in Fig. 2 (phase is available but not shown).
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Let the overparametrized model order be 21 = 60 in Step 1 of the SSKFD algorithin, and let
w(w;)z 1, (i.e., auniformn weighting). Since there are 12 numerator polynomials and 1
denominator polynomial, this requires the similtancous estimation of 780 paramcters. The
SK algorithin is iterated 12 times, using the the sparse matrix SVI) algorithm developed in
[4]. The sparse matrix SVD algorithin was indespensible for this problem, reducing RAM
requircmnents by better thanan order of magnitude (from approximately 60 Megabytes to 6
Megabytes) and reducing computation time two orders of nagnitude (from approximately
33 hours to 20 minutcs).

Steps 2, 3, and 4 (the realization portion) of the SSFD algorithin are computed yging
r =80, s == 240. The singular values arc plotted in Fig. 1.1t is seen] that there is a
sharp drop off at 180 states since there is anczact state-space realization of this size (i. e,
180 = min(ny,n,) * 60). However, for demonstration purposes, amodel order of 100 is
chosen (i.e., g = 100). This is also rcasonable since the error from the singular value plot
is scen to have dropped approximately 3 orders of magnitude at this point.

A magnitude plot of the state-s} mce model realized from Step 4 of the algorithin is shown
inFig. 2 (solid line) superimposed on the response data (dashed line). The state space
model is stable, and is scen to mateh the data wc]] over a considerable bandwidth.

6. C ONCLUSIONS

The SSFI) algorithm has been extended to estimating state-sIlmcc models in arbitrary
operators. In order to support this extension, a result was proved characterizing the
extrancous dynanics introduced by overparamectri zation. The main result is surprisingly
siinple, indicati ng that the extrancous dynamics are always mside the wnit circle regardless
of the operator being used (this resull assumes no noise, infinite precision arithmetic, use
of the Moore-Penrose pscudoinverse, and that the polynomials are fitted monic i their
highest power). This result is also inportant to all arcas of identification and estimation
sinceitindicates that the shift, operator is well behaved withrespect to overpar ametrization
while the delta-rule and Laplace operators arc not. Appropriate modifications of these
latter operators was given to cnsure that they overparametrize stably. However, additional
cflorts are required to obtain results comparable to the good perforinance experienced using
the shift opcrator formulation of the SSFD algorithin.

The SSFI) algorithin (in the shift operator) was tested on experimental data set demon-
strating the successful identification of a multivariable (4-input/3-output) 100 state model
over a bandwidth of 100 Hertz. In this case, the SSFD algorithin was used in conjunction
with frequency data acquired using the multisinusoidal input designs in [3]. The general
results are encouraging, and indicate that the approach would be useful in such areas as
adaptive optics, flexible structures, helicopter /rotocraft testing, high perforinance tracking)
or any other applications requiring the accurate identification of Iligll-order multivariable
systeins over wide bandwidths.
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Hankel Singular Values
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Fig. 1 Hankel singular values
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